What is the nuclear binding energy of He? Mass of He nucleus 4.00150 amu Mass of a proton 1.00728 amu 1.00866 amu Mass of a neutron 2.9979*10 m/s Speed of light 6.022x103 Abogadro's number

Respuesta :

Answer : The nuclear binding energy of He for one mole is [tex]2.0\times 10^{12}J/mol[/tex]

Explanation :

The isotopic representation of He : [tex]_{2}^{4}\textrm{He}[/tex]

Atomic number = Number of protons = 2

Mass number = 4

Number of neutrons = Mass number - Atomic number = 4 - 2 = 2

To calculate the mass defect of the nucleus, we use the equation:

[tex]\Delta m=[(n_p\times m_p)+(n_n\times m_n)+]-M[/tex]

where,

[tex]n_p[/tex] = number of protons  = 2

[tex]m_p[/tex] = mass of one proton  = 1.00728 amu

[tex]n_n[/tex] = number of neutrons  = 2

[tex]m_n[/tex] = mass of one neutron = 1.00866 amu

M = Nuclear mass number = 4.00150 amu

Putting values in above equation, we get:

[tex]\Delta m=[(2\times 1.00728)+(2\times 1.00866)]-[4.00150]\\\\\Delta m=0.03038amu[/tex]

Now converting the value of amu into kilograms, we use the conversion factor:

[tex]1amu=1.66\times 10^{-27}kg[/tex]

So, [tex]0.03038amu=0.03038\times 1.66\times 10^{-27}kg=0.0504\times 10^{-27}kg[/tex]

To calculate the equivalent energy, we use the equation:

[tex]E=\Delta mc^2[/tex]

E = nuclear binding energy = ?

[tex]\Delta m[/tex] = mass change = [tex]0.0504\times 10^{-27}kg[/tex]

c = speed of light = [tex]3\times 10^8m/s[/tex]

Putting values in above equation, we get:

[tex]E=(0.0504\times 10^{-27}kg)\times (3.0\times 10^8m/s)^2\\\\E=4\times 10^{-12}J[/tex]

Nuclear binding energy for one mole is:

[tex]E=(4.0\times 10^{-12}J)\times (6.022\times 10^{23}mol^{-1})=2.0\times 10^{12}J/mol[/tex]

Therefore, the nuclear binding energy of He for one mole is [tex]2.0\times 10^{12}J/mol[/tex]