A plate is removed from an oven at temperature of 50◦ and placed in a large room at 20◦ . After 5 minutes the temperature of the plate is 40◦ . How much longer will it take to reach 30◦ ?

Respuesta :

Explanation:

The given data  is as follows.

Initial temperature ([tex]T_{1}[/tex]) = [tex]50^{o}C[/tex]

Room temperature ([tex]T_{a}[/tex]) = [tex]20^{o}C[/tex]

Time (t) = 5 min

Final temperature (T) = [tex]40^{o}C[/tex]

According to the unsteady state equation,

           [tex]\frac{ln (T - T_{a})}{(T_{1} - T_{a})} = \frac{-h \times A \times t}{dV \times C}[/tex]

where,       h = heat transfer coefficient

                  A = area

                 d = density

                 V = volume

                 C = specific heat capacity

All of these are constants and can be expressed as K

Therefore,          K = [tex]\frac{h \times A}{dV \times C}[/tex]

                   [tex]\frac{ln (T - T_{a})}{(T_{1} - T_{a})} = -K \times t[/tex]

                    [tex]\frac{ln (40 - 20)}{(50 - 20)} = -K \times 5[/tex]                                                                                       0.4055 = 5K  

                                        K = 0.0811

After 5 minutes, the new temperature will be as follows.  

         New temperature ([tex]T_{2}[/tex]) = [tex]30^{o}C[/tex]

                                   Time (t) = ?

Again, from the unsteady state conduction,

    [tex]\frac{ln (T_{2} - T_{a})}{(T_{i} - T_{a})} = [tex]\frac{-h \times A \times t}{dV \times C}[/tex] = [tex]-K \times t[/tex]      

              [tex]\frac{ln [(30 - 20)}{(50 - 20)} = - 0.0811 \times t[/tex]  

                                   1.0986 = [tex]0.0811 \times t[/tex]

                                         t = 13.55 min

Thus, we can conclude that after 13.55 minutes the temperature reaches to [tex]30^{o}C[/tex].