Respuesta :

Answer : The moles of [tex]O_2[/tex] left in the products are 0.16 moles.

Explanation :

First we have to calculate the moles of [tex]CH_4[/tex].

Using ideal gas equation:

[tex]PV=nRT[/tex]

where,

P = pressure of gas = 1 atm

V = volume of gas = 10 L

T = temperature of gas = [tex]27^oC=273+27=300K[/tex]

n = number of moles of gas = ?

R = gas constant = 0.0821 L.atm/mol.K

Now put all the given values in the ideal gas equation, we get:

[tex](1atm)\times (10L)=n\times (0.0821L.atm/mol.K)\times (300K)[/tex]

[tex]n=0.406mole[/tex]

Now we have to calculate the moles of [tex]O_2[/tex].

The balanced chemical reaction will be:

[tex]CH_4+2O_2\rightarrow CO_2+2H_2O[/tex]

From the balanced reaction we conclude that,

As, 1 mole of [tex]CH_4[/tex] react with 2 moles of [tex]O_2[/tex]

So, 0.406 mole of [tex]CH_4[/tex] react with [tex]2\times 0.406=0.812[/tex] moles of [tex]O_2[/tex]

Now we have to calculate the excess moles of [tex]O_2[/tex].

[tex]O_2[/tex] is 20 % excess. That means,

Excess moles of [tex]O_2[/tex] = [tex]\frac{(100 + 20)}{100}[/tex] × Required moles of [tex]O_2[/tex]

Excess moles of [tex]O_2[/tex] = 1.2 × Required moles of [tex]O_2[/tex]

Excess moles of [tex]O_2[/tex] = 1.2 × 0.812 = 0.97 mole

Now we have to calculate the moles of [tex]O_2[/tex] left in the products.

Moles of [tex]O_2[/tex] left in the products = Excess moles of [tex]O_2[/tex] - Required moles of [tex]O_2[/tex]

Moles of [tex]O_2[/tex] left in the products = 0.97 - 0.812 = 0.16 mole

Therefore, the moles of [tex]O_2[/tex] left in the products are 0.16 moles.