Respuesta :

Answer:

A

Step-by-step explanation:

Using the definition

n[tex]C_{r}[/tex] = [tex]\frac{n!}{r!(n-r)!}[/tex]

where n! = n(n - 1)(n - 2).... × 3 × 2 × 1

Then evaluating numerator and denominator

10[tex]C_{3}[/tex]

= [tex]\frac{10!}{3!(7!)}[/tex]

= [tex]\frac{10(9)(8)(7)(6)(5)(4)(3)(2)(1)}{3(2)(1)(7(6)(5)(4)(3)(2)(1)}[/tex]

Cancel 7(6)(5)(4)(3)(2)(1) on numerator/ denominator, leaving

= [tex]\frac{10(9)(8)}{3(2)}[/tex] = [tex]\frac{720}{6}[/tex] = 120

-------------------------------------------------------------------------------------

6[tex]C_{4}[/tex]

= [tex]\frac{6!}{4!(2!)}[/tex]

= [tex]\frac{6(5)(4)(3)(2)(1)}{4(3)(2)(1)(2)}[/tex]

Cancel 4(3)(2)(1) on numerator/ denominator, leaving

[tex]\frac{6(5)}{2}[/tex] = [tex]\frac{30}{2}[/tex] = 15

-------------------------------------------------------------------------------------

Dividing numerator by denominator gives

[tex]\frac{120}{15}[/tex] = 8 → A