Given f(x) and g(x) = f(k⋅x), use the graph to determine the value of k.


A. 5
B. [tex]\frac{1}{5}[/tex]
C. -[tex]\frac{1}{5}[/tex]
D. -5

Given fx and gx fkx use the graph to determine the value of k A 5 B texfrac15tex C texfrac15tex D 5 class=

Respuesta :

Answer:

Option A k=5

Step-by-step explanation:

step 1

Find the equation of f(x)

we have the points

(-10,-6) and (0,4)

Find the slope m

[tex]m=(4+6)/(0+10)=1[/tex]

The function in slope intercept form is equal to

[tex]f(x)=mx+b[/tex]

we have

[tex]m=1[/tex]

[tex]b=4[/tex] -----> the point (0,4) is the y-intercept

substitute

[tex]f(x)=x+4[/tex]

step 2

Find the equation of g(x)

we have the points

(-2,-6) and (0,4)

Find the slope m

[tex]m=(4+6)/(0+2)=5[/tex]

The function in slope intercept form is equal to

[tex]g(x)=mx+b[/tex]

we have

[tex]m=5[/tex]

[tex]b=4[/tex] -----> the point (0,4) is the y-intercept

substitute

[tex]g(x)=5x+4[/tex]

step 3

Find the value of k

we have

[tex]f(x)=x+4[/tex]

[tex]g(x)=5x+4[/tex] -----> equation A

[tex]g(x)=f(kx)[/tex] -----> equation B

[tex]f(kx)=kx+4[/tex] ----> equation C

substitute equation A and equation C in equation B and solve for k

[tex]kx+4=5x+4[/tex]

[tex]kx-5x=0\\kx=5x\\k=5[/tex]