Respuesta :
The right answer for the question that is being asked and shown above is that: "fraction with numerator negative 3 minus i and denominator 10." This is the simplified expression fraction with numerator of the square root of negative one and denominator of the quantity three plus eight times i minus the quantity two plus five times i.
The simplified expression is: [tex]\mathbf{\frac{i+13}{170}}[/tex]
The fraction is given as:
[tex]\mathbf{\frac{\sqrt{-1}}{3 +8i -2 + 5i}}[/tex]
Collect like terms
[tex]\mathbf{\frac{\sqrt{-1}}{3 +8i -2 + 5i} = \frac{\sqrt{-1}}{3 -2+8i + 5i}}[/tex]
[tex]\mathbf{\frac{\sqrt{-1}}{3 +8i -2 + 5i} = \frac{\sqrt{-1}}{1+13i}}[/tex]
In complex numbers, we have:
[tex]\mathbf{i =\sqrt{-1}}[/tex]
So, we have:
[tex]\mathbf{\frac{\sqrt{-1}}{3 +8i -2 + 5i} = \frac{i}{1+13i}}[/tex]
Rationalize
[tex]\mathbf{\frac{\sqrt{-1}}{3 +8i -2 + 5i} = \frac{i}{1+13i} \times \frac{1-13i}{1-13i}}[/tex]
[tex]\mathbf{\frac{\sqrt{-1}}{3 +8i -2 + 5i} = \frac{i(1-13i)}{1^2-(13i)^2}}[/tex]
[tex]\mathbf{\frac{\sqrt{-1}}{3 +8i -2 + 5i} = \frac{i-13(-1)}{1-169(-1)}}[/tex]
[tex]\mathbf{\frac{\sqrt{-1}}{3 +8i -2 + 5i} = \frac{i+13}{170}}[/tex]
Hence, the simplified expression is: [tex]\mathbf{\frac{i+13}{170}}[/tex]
Read more about expressions at:
https://brainly.com/question/403991