Answer:
The fourth box contains 7 candies
Solution:
Let us assume that the first box contains x amount
The second box contain twice of first box that is = 2x
The third box contains two pound more than the first box that is = (x+2)
The last box contains [tex]\frac{1}{4}[/tex] the amount in the 2nd Box is [tex]\left(\frac{1}{4} \times 2 x\right)=\left(\frac{x}{2}\right)[/tex]
Now the total candy in the box = 65
So we can say,
[tex]x+2 x+(x+2)+\left(\frac{x}{2}\right)=65[/tex]
[tex]\Rightarrow 4 x+\left(\frac{x}{2}\right)=65-2[/tex]
[tex]\Rightarrow 4 x+\left(\frac{x}{2}\right)=63[/tex]
[tex]\Rightarrow 8 x+x=63 \times 2[/tex]
[tex]\Rightarrow 9 x=63 \times 2[/tex]
[tex]\Rightarrow \quad x=\frac{63 \times 2}{9}=14[/tex]
So, first box contains 14 candy
Second box contains [tex](2\times14) =28 candy[/tex]
The third box contain [tex](14+2) =16 candy[/tex]
The fourth box contains [tex]\left(\frac{14}{2}\right)=7[/tex]