Answer and explanation :
We have given expression [tex]3^{n+1}-3^n=2\times 3^n[/tex] for integer value of n
We have to prove L.H.S = R.H.S
Lets take L.H.S
[tex]3^{n+1}-3^n[/tex]
[tex]3^{n+1}[/tex] can be written as [tex]3^n.3[/tex]
So [tex]3^n.3-3^n[/tex]
Now take [tex]3^n[/tex] as common
[tex]3^n(3-1)=2.3^n[/tex] = R.H.S
Hence proved