Apply the properties of exponents to verify that each statement is an identity
.(3^n+1) − 3^n =( 2 ∙ 3^n) for integer values of n

Respuesta :

Answer and explanation :

We have given expression [tex]3^{n+1}-3^n=2\times 3^n[/tex] for integer value of n

We have to prove L.H.S = R.H.S

Lets take L.H.S

[tex]3^{n+1}-3^n[/tex]

[tex]3^{n+1}[/tex] can be written as [tex]3^n.3[/tex]

So [tex]3^n.3-3^n[/tex]

Now take [tex]3^n[/tex] as common

[tex]3^n(3-1)=2.3^n[/tex] = R.H.S

Hence proved