Answer:
[tex]\frac{7- \sqrt{71}i }{10}[/tex]
[tex]\frac{7+ \sqrt{71}i }{10}[/tex]
Step-by-step explanation:
[tex]5x^{2} - 7x + 6= 0[/tex]
By quadratic formula,
Given in this question a = 5,
b = -7
c = 6
x can be
[tex]\frac{-b + \sqrt{b^{2} - 4ac } }{2a}[/tex]
[tex]\frac{-b - \sqrt{b^{2} - 4ac } }{2a}[/tex]
Putting these values in the formula we get,
[tex]x1 = \frac{7+ \sqrt{49 - 120} }{10}[/tex]
[tex]x2 = \frac{7- \sqrt{49 - 120} }{10}[/tex]