Respuesta :

Answer:

[tex]cos(-2835^{\circ}) = \frac{1}{\sqrt{2}}[/tex]

[tex]sin(-2835^{\circ}) = \frac{1}{\sqrt{2}}[/tex]

Solution:

As per the question:

We need to find the values of:

[tex]cos(-2835^{\circ})[/tex]

[tex]sin(-2835^{\circ})[/tex]

Now, we know that:

[tex]cos(- \theta) = cos\theta[/tex]

[tex]sin(- \theta) = - sin\theta[/tex]

Also

[tex]cos(2n\pi - \theta) = cos\theta[/tex]

[tex]sin(2n\pi - \theta) = - sin\theta[/tex]

Now,

From the above eqn (1)  and (2):

[tex]cos(-2835^{\circ}) = cos(2835^{\circ})[/tex]

[tex]sin(-2835^{\circ}) = - sin(2835^{\circ})[/tex]

Now the above respective values can be further calculated from eqns (3) and (4):

[tex]cos(2(8)\pi - 45^{\circ}) = cos(45^{\circ}) = \frac{1}{\sqrt{2}}[/tex]

[tex]sin(2(8)\pi - 45^{\circ}) = -(- sin(45^{\circ})) = \frac{1}{\sqrt{2}}[/tex]

where

n = 8