Show that the folowing complex numbers have the same argument.
a. z1 = 3 + 3√3i and z2 = 1 + √3i
b. z1 = 1 + i and z2 = 4 + 4i

Respuesta :

Answer and explanation

(a) We have given that [tex]z_1=3+3\sqrt{3}i[/tex]

And [tex]z_2=1+\sqrt{3}i[/tex]

We have to prove that both complex number has same argument

Argument is given by [tex]\Theta =tan^{-1}(\frac{imaginary\ part}{real\ part})[/tex]

Argument of [tex]z_1=tan^{-1}\frac{3\sqrt{3}}{3}=tan^{-1}\sqrt{3}=60^{\circ}[/tex]

Argument of [tex]z_2=tan^{-1}\frac{\sqrt{3}}{1}=tan^{-1}\sqrt{3}=60^{\circ}[/tex]

Hence both [tex]z_!\ and\ z_2[/tex] have same argument

(b) We have given  We have given that [tex]z_1=1+i[/tex]

And [tex]z_2=4+4i[/tex]

We have to prove that both complex number has same argument

Argument is given by [tex]\Theta =tan^{-1}(\frac{imaginary\ part}{real\ part})[/tex]

Argument of [tex]z_1=tan^{-1}\frac{1}{1}=tan^{-1}1=45^{\circ}[/tex]

Argument of [tex]z_2=tan^{-1}\frac{4}{4}=tan^{-1}1=45^{\circ}[/tex]

Hence both [tex]z_!\ and\ z_2[/tex] have same argument