The data set represents the number of rings each person in a room is wearing.

0, 2, 4, 0, 2, 3, 2, 8, 6

What is the interquartile range of the data?

2
3
4
6

Respuesta :

If the data set represents the number of rings each person is wearing, being: 0,2,4,0,2,3,2,8,6, the interquartile range of the data is 2. Being, 4 as the Q1, 3 as the Q2 or median, and 6 as the Q3. Where the formula of getting the interquartile range is IQR= Q1-Q2.

Answer:

the interquartile range of the data is:

                                   4

Step-by-step explanation:

We are given a data set as:

             0, 2, 4, 0, 2, 3, 2, 8, 6

On arranging the data in the ascending i.e. increasing order is given by:

    0     0     2     2    2    3      4      6     8

The minimum value of data set=0

Maximum value of data set is: 8

Range of data set= Maximum value-Minimum value

i.e. Range= 8-0

i.e. Range= 8

Also, Median of set is the central tendency of the data and is given by:

Median=  2

Lower set of data is:

                0    0     2    2

Hence, The median of lower set of data is the lower quartile or first quartile.

i.e. [tex]Q_1[/tex]

Hence, [tex]Q_1=\dfrac{0+2}{2}\\\\\\Q_1=\dfrac{2}{2}\\\\\\Q_1=1[/tex]

Hence, Lower quartile=1

Similarly upper set of data is:

                    3      4      6     8

Hence, The median of upper set of data is the upper quartile or third quartile.

i.e. [tex]Q_3[/tex]

Hence, [tex]Q_3=\dfrac{4+6}{2}\\\\\\Q_3=\dfrac{10}{2}\\\\\\Q_3=5[/tex]

Hence, Upper quartile=5

Hence, the interquartile range(IQR) is given by:

IQR=Upper quartile-Lower quartile

IQR=5-1

                                    IQR=4