Respuesta :

Answer:

The solution is [tex]x=\frac{3}{2}[/tex].

Step-by-step explanation:

We have the following equation [tex]\left(\frac{2x}{9}\right)+\left(\frac{5}{9}\right)=\left(\frac{8}{9}\right)[/tex]

To find the value of x, you must:

  • Subtract [tex]\frac{5}{9}[/tex] from both sides

[tex]\frac{2x}{9}+\frac{5}{9}-\frac{5}{9}=\frac{8}{9}-\frac{5}{9}[/tex]

  • Simplify

[tex]\frac{2x}{9}=\frac{1}{3}[/tex]

  • Multiply both sides by 9

[tex]\frac{2x}{9}\cdot \:9=\frac{1}{3}\cdot \:9[/tex]

  • Simplify

[tex]2x=3[/tex]

  • Divide both sides by 2

[tex]\frac{2x}{2}=\frac{3}{2}[/tex]

[tex]x=\frac{3}{2}[/tex]

To check if this value is a solution of the equation, you substitute the value into the equation and see if the numbers match.

[tex]\left(\frac{2x}{9}\right)+\left(\frac{5}{9}\right)=\left(\frac{8}{9}\right)\\\\\left(\frac{2}{9}\right\cdot x)+\left(\frac{5}{9}\right)=\left(\frac{8}{9}\right)\\\\\left(\frac{2}{9}\right\cdot \frac{3}{2} )+\left(\frac{5}{9}\right)=\left(\frac{8}{9}\right)\\\\\frac{1}{3}+\frac{5}{9}=\frac{8}{9} \\\\\frac{3}{9}+\frac{5}{9}=\frac{8}{9}\\\\\frac{8}{9}=\frac{8}{9}[/tex]

Both sides are equal, verifying that [tex]x=\frac{3}{2}[/tex] is a valid solution.