If a geometric sequence has a2 = 495 and a6 = 311, approximate the value of the common ratio ???? to four decimal
places.

Respuesta :

Answer:

[tex]r = 0.8903 [/tex]

Step-by-step explanation:

given,

a₂ = 495

a₆ = 311

geometric  sequence formula

                       [tex]a_n = ar^{n-1}[/tex]

                       [tex]a_2 = ar^{2-1}[/tex]

                       [tex]a_2 = ar [/tex]...................(1)

                       [tex]a_6 = ar^{6-1}[/tex]

                       [tex]a_6 = ar^5 [/tex]................(2)

dividing equation (2) by (1)

                     [tex]\dfrac{a_6}{a_2} = \dfrac{ar^5}{ar}[/tex]

                     [tex]\dfrac{311}{495} = r^4[/tex]

                     [tex]r^4 = 0.628 [/tex]

                     [tex]r = 0.8903 [/tex]

hence, the common ratio of the geometric sequence is [tex]r = 0.8903 [/tex]