Respuesta :

Answer:

[tex]\ln\frac{xy^2}{z^3}[/tex]

Step-by-step explanation:

Data provided:

ln(x) + 2 ln(y) − 3 ln(z)

Now,

From the properties of log function,

ln(A) + ln(B) = ln(AB)

n × ln(x) = ln(xⁿ)

and,

ln(A) - ln(B) = [tex]\ln\frac{A}{B}[/tex]

applying the properties in the given equation

we get

⇒  ln(x) + 2 ln(y)  − 3 ln(z)

or

⇒ ln(x) + ln(y²) - ln(z³)            (using n × ln(x) = ln(xⁿ))

or

⇒ ln(xy²) - ln(z³)                    (using ln(A) + ln(B) = ln(AB) )

or

⇒ [tex]\ln\frac{xy^2}{z^3}[/tex]   (using ln(A) - ln(B) = [tex]\ln\frac{A}{B}[/tex] )