Respuesta :

Answer:

no solution

Step-by-step explanation:

given equation

2 x - 4 y = -1...................(1)

3 x - 6 y = 4...................(2)

now using substitution method

substituting value of x from equation 2 in equation(1)

3 x - 6 y = 4

3 x = 4 + 6 y

[tex]x= \dfrac{4 + 6 y}{3}[/tex]

putting value in equation 1

[tex]2(\dfrac{4 + 6 y}{3}) - 4 y = -1[/tex]

by solving this term of y get cancel.

so,

when we look at the given equation

the condition of no solution

[tex]\dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}[/tex]

[tex]\dfrac{2}{3} = \dfrac{-4}{-6} \neq \dfrac{-1}{4}[/tex]

hence, the condition of no solution follows

so, there will no solution to the given equation.