Respuesta :

Answer:

[tex]x=\frac{-5*(1+e^{3}) }{10-e^{3} }[/tex]

Step-by-step explanation:

Rewrite the equation, adding 3 to both sides and subtracting log(x-5) from both sides:

[tex]log(10x+5)-log(x-5)=3[/tex]

Using the next propierty:

[tex]log(\frac{1}{x} )=-log(x)[/tex]

[tex]log(10x+5)+log(\frac{1}{x-5})=3[/tex]

Using this propierty:

[tex]log(x*y)=log(x)+log(y)[/tex]

[tex]log(\frac{10x+5}{x-5})=3[/tex]

Cancel logarithms by taking exp of both sides:

[tex]e^{log(\frac{10x+5}{x-5})} =e^{3} \\\frac{10x+5}{x-5}=e^{3}[/tex]

Multiplying both sides by x-5 and factoring:

[tex]x(10-e^{3} )=-5-5e^{3}[/tex]

Solving for x multiplying both sides by [tex]10-e^{3}[/tex]

[tex]x=\frac{-5-5e^{3} }{10-e^{3} } =\frac{-5*(1+e^{3}) }{10-e^{3} }[/tex]