Answer:
Product is [tex]w^5+w^2-w+1[/tex]
Step-by-step explanation:
Given: [tex](w^2+1)(w^3-w+1)[/tex]
Simplify the product of polynomial.
It is product of binomial with trinomial.
[tex]\Rightarrow (w^2+1)(w^3-w+1)[/tex]
[tex]\Rightarrow w^2(w^3-w+1)+1(w^3-w+1)[/tex] (Distributive property)
[tex]\Rightarrow w^2\cdot w^3-w^2\cdot w+w^2\cdot 1+w^3-w+1[/tex] (Distributive property)
[tex]\Rightarrow w^5-w^3+w^2+w^3-w+1[/tex] (combine like term)
[tex]\Rightarrow w^5+w^2-w+1[/tex]
Product is [tex]w^5+w^2-w+1[/tex]