Respuesta :

Answer:

t = -2,2

Step-by-step explanation:

The curve equation, [tex]r(t)=2ti+t^2j-t^2k[/tex]

Let at t=a tangent to the curve.

Equation of tangent:  

L(k) = r(a) + k r'(a)

[tex]r(a)=<2a,a^2,-a^2>[/tex]

[tex]r'(t)=<2,2t,-2t>[/tex]

Put t=a

[tex]r'(a)=<2,2a,-2a>[/tex]

Equation of tangent:

[tex]L(k) = <2a,a^2,-a^2> + k<2,2a,-2a>[/tex]

[tex]L(k)=<2a+2k,a^2+2ak,-a^2-2ak>[/tex]

Tangent passing through (0,-4,4)

Therefore,

2a + 2k = 0   ⇒  k = -a

[tex]a^2+2ak=-4[/tex]

[tex]a^2-2a^2=-4[/tex]

[tex]-a^2=-4[/tex]

[tex]a=\pm 2[/tex]

At t = -2,2  tangent line to the curve passing through (0,-4,4)