A pencil rolls horizontally of a 1 meter high desk and lands .25 meters from the base of the desk. How fast was the pencil rolling when it left the desk?

Respuesta :

Answer: 0.55 m/s

Explanation:

This situation is related to projectile motion (also called parabolic motion), where the main equations are as follows:

[tex]x=V_{o} cos\theta t[/tex] (1)

[tex]y=y_{o}+Vo sin \theta t + \frac{g}{2}t^{2}[/tex] (2)

Where:

[tex]x=0.25 m[/tex] is the horizontal displacement of the pencil

[tex]V_{o}[/tex] is the pencil's initial velocity

[tex]\theta=0\°[/tex] since we are told the pencil rolls horizontally before falling

[tex]t[/tex] is the time since the pencil falls until it hits the ground

[tex]y_{o}=1 m[/tex]  is the initial height of the pencil

[tex]y=0[/tex]  is the final height of the pencil (when it finally hits the ground)

[tex]g=-9.8m/s^{2}[/tex]  is the acceleration due gravity, always acting vertically downwards

Begining with (1):

[tex]x=V_{o} cos(0\°) t[/tex] (3)

[tex]x=V_{o}t[/tex] (4)

Finding [tex]t[/tex] from (2):

[tex]0=1 m+ \frac{-9.8m/s^{2}}{2}t^{2}[/tex] (5)

[tex]t=\sqrt{\frac{-2y_{o}}{g}}[/tex] (6)

Substituting (6) in (4):

[tex]x=V_{o}\sqrt{\frac{-2y_{o}}{g}}[/tex] (7)

Isolating [tex]V_{o}[/tex]:

[tex]V_{o}=\frac{x}{\sqrt{\frac{-2y_{o}}{g}}}[/tex] (8)

[tex]V_{o}=\frac{0.25 m}{\sqrt{\frac{-2(1 m)}{-9.8m/s^{2}}}}[/tex] (9)

Finally:

[tex]V_{o}=0.55 m/s[/tex]