Which shows the correct substitution of the values a, b, and c from the equation 0 = – 3x2 – 2x + 6 into the quadratic formula? Quadratic formula: x = StartFraction negative b plus or minus StartRoot b squared minus 4 a c EndRoot Over 2 a EndFraction x = StartFraction negative (negative 2) plus or minus StartRoot (negative 2) squared minus 4 (negative 3)(6) EndRoot Over 2(negative 3) EndFraction x = StartFraction negative 2 plus or minus StartRoot 2 squared minus 4 (negative 3)(6) EndRoot Over 2(negative 3) EndFraction x = StartFraction negative (negative 2) plus or minus StartRoot (negative 2) squared minus 4 (3)(6) EndRoot Over 2(3) EndFraction x = StartFraction negative 2 plus or minus StartRoot 2 squared minus 4 (3)(6) EndRoot Over 2(3) EndFraction

Respuesta :

Answer:

x = StartFraction negative (negative 2) plus or minus StartRoot (negative 2) squared minus 4 (negative 3)(6) EndRoot Over 2(negative 3) EndFraction

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]0=-3x^{2}-2x+6[/tex]  

so

[tex]a=-3\\b=-2\\c=6[/tex]

substitute in the formula

[tex]x=\frac{-(-2)(+/-)\sqrt{-2^{2}-4(-3)(6)}} {2(-3)}[/tex]

therefore

x = StartFraction negative (negative 2) plus or minus StartRoot (negative 2) squared minus 4 (negative 3)(6) EndRoot Over 2(negative 3) EndFraction

Answer:

its a

Step-by-step explanation: