Answer:
The power dissipated by the cord is 15.1W
Explanation:
We can calculate the power using the following formula:
[tex]P=\frac{I^2}{R}[/tex]
where the resistance is given by:
[tex]R=\rho*\frac{L}{A}[/tex]
[tex]A=\pi*r^2\\A=\pi*(\frac{0.129*10^{-2}}{2})=1.18*10^{-6}[/tex]
[tex]\rho=1.68^{-8} ohm*m[/tex]
We have to multiply by 2 because the cord has two wires.
[tex]R=(2)*1.68*10^{-8}*\frac{1.8}{1.18*10^{-6}}\\R=0.0523ohm[/tex]
now we can calculate the power dissipated of the cord:
[tex]P=I^2*R\\P=(17.0)^2*0.0523\\P=15.1 W[/tex]