The speed of a moving sidewalk at an airport is 9 ​ft/sec. A person can walk 65 ft forward on the moving sidewalk in the same time it takes to walk 13 ft on a nonmoving sidewalk in the opposite direction. At what rate would a person walk on a nonmoving​ sidewalk?

Respuesta :

Answer:

person walk rate:

[tex]V_{p}=2.25 ft/sec[/tex]

Explanation:

A person walking on the moving sidewalk moves at a velocity:

[tex]V_{ms}=V_{p}+V_{s}[/tex]

Where [tex]V_{p} [/tex] is the velocity of the person and [tex]V_{s} [/tex] the velocity of the sidewalk.

The distance traveled in a time t is t times the velocity:

[tex]D_{ms}=V_{ms}*t=(V_{p}+V_{s})*t=65 ft[/tex]

I this same time a person on a nonmoving sidewalk travels 13ft:

[tex]D_{p}=V_{p} * t=13 ft[/tex]

Solving this for t:

[tex]t=\frac{13ft}{V_{p} }[/tex]

Replacing this on the equation for the moving sidewalk:

[tex](V_{p}+V_{s})*\frac{13ft}{V_{p}}=65 ft[/tex]

[tex]1+\frac{V_{s}}{V_{p}}=65 ft/13ft=5[/tex]

[tex]\frac{V_{s}}{V_{p}}=5-1=4[/tex]

[tex]V_{p}=\frac{V_{s} }{4}=\frac{9 ft/sec }{4}=2.25 ft/sec[/tex]