contestada

Question 4
Find the values of x and y that satisfy 3x - 1 + 2y = 0 and 3x2 - y2 + 4 = 0. Use the algebraic method to find the solution, and then use the graphing method to confirm whether the system of equations has real roots.

Respuesta :

Answer:

No real roots

Step-by-step explanation:

The given equations are:

[tex]3x-1+2y=0[/tex]

[tex]3x^2-y^2+4=0[/tex]

We make y the subject in the first equation to get

[tex]y=\frac{1-3x}{2}[/tex]

We substitute into the second expression to get:

[tex]3x^2-(\frac{1-3x}{2})^2+4=0[/tex]

We expand to get:

[tex]3x^2-\frac{(1-6x+9x^2)}{4}+4=0[/tex]

Multiply through by 4 to get:

[tex]12x^2-1+6x-9x^2+16=0[/tex]

[tex]3x^2+6x+15=0[/tex]

The discriminant is given by [tex]D=b^2-4ac[/tex]

[tex]D=3^2-4*12*15[/tex]

[tex]D=-711[/tex]

Since the discriminant is less than zero, the two curves never intersects.

Therefore the system has no real roots

Ver imagen kudzordzifrancis