Suppose we want to build a rectangular storage container with open top whose volume is $12 cubic meters. Assume that the cost of materials for the base is$12 dollars per square meter, and the cost of materials for the sides is $8 dollars per square meter. The height of the box is three times the width of the base. What’s the least amount of money we can spend to build such a container?

Respuesta :

Answer:265.25

Step-by-step explanation:

Given

Volume of box[tex]=12 m^3[/tex]

height is 3 times the width

let height, length and breadth be H, L & B

[tex]H=3\times B[/tex]

[tex]V=12=L\times B\times H[/tex]

4=B^2\times L[/tex]

[tex]L=\frac{4}{B^2}[/tex]

Cost of side walls $ [tex]8/m^2[/tex]

Cost of base $ [tex]12/m^2[/tex]

Cost of side walls[tex]=(2LH+2BH)\cdot 8[/tex]

Cost of base [tex]=12LB[/tex]

Total cost [tex]C=16LH+16BH+12LB[/tex]

[tex]C=48LB+48B^2+12LB[/tex]

[tex]C=\frac{192}{B}+48B^2+\frac{48}{B}[/tex]

differentiate C w.r.t B to get minimum cost

[tex]\frac{\mathrm{d} C}{\mathrm{d} B}=-\frac{192}{B^2}+2\times 48 B-\frac{48}{B^2}[/tex]

[tex]B^3=\frac{240}{2\times 48}[/tex]

[tex]B=1.35 m[/tex]

[tex]H=3\times 1.35=4.07 m[/tex]

L=2.19 m

C=$ 265.25