The mass of the Moon is 7.35 x 1022 kg, while that of Earth is 5.98 x 1024 kg. The average distance from the center of the Moon to the center of Earth is 384,000 km. What is the size of the gravitational force that the Moon exerts on Earth? How do your answers compare with the force between the Sun and Earth calculated in the text?

Respuesta :

Answer:

aaa

Explanation:

[tex]m_e[/tex] = Mass of the Earth =  5.98 × 10²⁴ kg

G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²

[tex]r_1[/tex] = Distance from the center of the Moon to the center of Earth = 6371000 m

[tex]r_2[/tex] = Distance from the center of the earth center to sun center

[tex]m_m[/tex] = Mass of moon = [tex]7.35\times 10^{22}\ kg[/tex]

M = Mass of sun = [tex]1.989\times 10^{30}\ kg[/tex]

[tex]F_1=G\frac{m_em_m}{r_1^2}\\\Rightarrow F_1=6.67\times 10^{-11}\frac{5.98\times 10^{24}\times 7.35\times 10^{22}}{(384000000)^2}\\\Rightarrow F_1=1.988\times 10^{20}\ N[/tex]

[tex]F_2=G\frac{Mm_e}{r_1^2}\\\Rightarrow F_2=6.67\times 10^{-11}\frac{5.98\times 10^{24}\times 1.989\times 10^{30}}{(149.6\times 10^9+6371000+695.51\times 10^6)^2}\\\Rightarrow F_2=3.511\times 10^{22} N[/tex]

[tex]\frac{F_1}{F_2}=\frac{1.988\times 10^{20}}{3.511\times 10^{22}}\\\Rightarrow \frac{F_1}{F_2}=0.00566\\\Rightarrow F_1=F_20.00566[/tex]

Hence the force of moon on earth is 0.00566 times the force of earth on moon center to center