Obtain the general solution to the equation. (x^2+10) + xy = 4x=0 The general solution is y(x) = ignoring lost solutions, if any.

Respuesta :

Answer:

[tex]y(x)=4+\frac{C}{\sqrt{x^2+10}}[/tex]

Step-by-step explanation:

We are given that a differential equation

[tex](x^2+10)y'+xy-4x=0[/tex]

We have to find the general solution of given differential equation

[tex]y'+\frac{x}{x^2+10}y-\frac{4x}{x^2+10}=0[/tex]

[tex]y'+\frac{x}{x^2+10}y=4\frac{x}{x^2+10}[/tex]

Compare with

[tex]y'+P(x) y=Q(x)[/tex]

We get

[tex]P(x)=\frac{x}{x^2+10}[/tex]

[tex]Q(x)=\frac{4x}{x^2+10}[/tex]

I.F=[tex]e^{\int\frac{x}{x^2+10} dx}=e^{\frac{1}{2}ln(x^2+10)}[/tex]

[tex]e^{ln\sqrt(x^2+10)}=\sqrt{x^2+10}[/tex]

[tex]y\cdot \sqrt{x^2+10}=\int \frac{4x}{x^2+10}\times \sqrt{x^2+10} dx+C[/tex]

[tex]y\cdot \sqrt{x^2+10}=\int \frac{4x}{\sqrt{x^2+10}}+C[/tex]

[tex]y\cdot \sqrt{x^2+10}=4\sqrt{x^2+10}+C[/tex]

[tex]y(x)=4+\frac{C}{\sqrt{x^2+10}}[/tex]