Respuesta :
Answer:
x= [tex]\frac{211}{27}[/tex]
Y= [tex]\frac{25}{27}[/tex]
Step-by-step explanation:
For solving the two variable linear equation by Cramer's rule we have to find the determinant .
here, determinant D = [tex]\left[\begin{array}{ccc}5&1\\2&-5\\\end{array}\right][/tex]
D=(5 × (-5)) - (2 × 1)
D = (-25)-(2)
D= -27
Now again we have to find the determinant with sub X and determinant with sub Y
Determinant with sub X ( Dx)
Dx= [tex]\left[\begin{array}{ccc}40&1\\11&-5\\\end{array}\right][/tex]
Dx= ((40×(-5)) - (11×1)
Dx= -200-11
Dx= -211
now Determinant with sub Y Dy
Dy=[tex]\left[\begin{array}{ccc}5&40\\2&11\\\end{array}\right][/tex]
Dy=(5×11)-(2×40)
Dy=(55-80)
Dy=-25
now to find the values of variables X and Y, we have to write
X= [tex]\frac{Dx}{D}[/tex]
or X=[tex]\frac{-211}{-27}[/tex]
and
Y=[tex]\frac{Dy}{D}[/tex]
i.e Y=[tex]\frac{-25}{-27}[/tex]
form here we got the value of variable X and Y (Answer)