Respuesta :

Answer:

x= [tex]\frac{211}{27}[/tex]

Y= [tex]\frac{25}{27}[/tex]

Step-by-step explanation:

For solving the two variable linear equation by Cramer's rule we have to find the determinant .

here,  determinant D = [tex]\left[\begin{array}{ccc}5&1\\2&-5\\\end{array}\right][/tex]

                               D=(5 × (-5)) - (2 × 1)

                               D = (-25)-(2)

                               D= -27

Now again we have to find the determinant with sub X and determinant with sub Y

Determinant with sub X ( Dx)

Dx= [tex]\left[\begin{array}{ccc}40&1\\11&-5\\\end{array}\right][/tex]

Dx= ((40×(-5)) - (11×1)

Dx= -200-11

Dx= -211

now Determinant with sub Y Dy

Dy=[tex]\left[\begin{array}{ccc}5&40\\2&11\\\end{array}\right][/tex]

Dy=(5×11)-(2×40)

Dy=(55-80)

Dy=-25

now to find the values of variables X and Y, we have to write

X= [tex]\frac{Dx}{D}[/tex]

or X=[tex]\frac{-211}{-27}[/tex]

and

Y=[tex]\frac{Dy}{D}[/tex]

i.e Y=[tex]\frac{-25}{-27}[/tex]

form here we got the value of variable X and Y (Answer)