Respuesta :
Answer: [tex]v_d=3.33 \times 10^{-4} m.s^-1[/tex]
Explanation: Drift velocity is the velocity attained by the chaged particles in a material due to an electric field.
Most electrical signals carried by currents travel at speeds on the order of [tex]10^8 m.s_-1[/tex], a significant fraction of the speed of light.
Mathematically, we have:
[tex]I=n.A.q.v_d[/tex]....................................(1)
where:
- I= current in the conductor (A)
- A= cross-sectional area normal to the flow of current (m²)
- q= charge on each charge carrier (coulombs, C)
- n= no. of charge carriers per unit volume i.e., charge density
- [tex]v_d[/tex]= drift velocity [tex]m.s^-1[/tex]
Given:
- I= 8 A
- Diameter of wire, d= 1.5 mm =[tex]1.5\times 10^{-3} m[/tex]
- q= [tex]1.6\times 10^{-19} C[/tex]
- n= [tex]8.5\times 10^{28} m^{-3}[/tex]
Asked:
- [tex]v_d[/tex]
Firstly, we find area:
[tex]A=\pi \frac{d^{2} }{4}[/tex]
[tex]A=\pi \frac{1.5\times 10^{-3}}{4}[/tex]
[tex]A= 1.767\times 10^{-6} m^{2}[/tex]
Now, putting the required values in eq. (1)
[tex]8=(8.5\times 10^{28}) \times (1.767\times 10^{-6}) \times (1.6\times 10^{-19})\times v_d[/tex]
[tex]v_d=\frac{8}{8.5\times 10^{28}\times 1.6\times 10^{-19}\times 1.767\times 10^{-6} }[/tex]
[tex]v_d=3.33 \times 10^{-4} m.s^-1[/tex]
The drift velocity [tex]V_D[/tex] of the electrons in the wire is 3.329 × 10^⁻⁴ meter per seconds.
Given the data in the question;
Current; [tex]I = 8.0A[/tex]
Length of cord; [tex]L=3.00m[/tex]
Diameter of copper wire; [tex]d = 1.5mm[/tex]
Charge of the electron; [tex]e = 1.6*10^{-19}C[/tex]
Mass of electron; [tex]m_e=9.1*10^{-31}kg[/tex]
Resistivity of copper; [tex]R=1.7*10^{-8}ohm[/tex]
Concentration of free electrons in copper; [tex]n= 8.5 * 10^{28}m^{-3}[/tex]
Drift velocity of the electrons in the wire = ?
Drift velocity is the average velocity with which an electrons drift in the opposite direction of its field.
[tex]V_D = \frac{I}{n*e*A}[/tex]
Where I is current flow, n is the free electron density, e is the charge of an electron and A is the cross sectional area.
First we cross-sectional area of the wire:
Area; [tex]A =\frac{\pi }{4} d^2[/tex]
We substitute in our given values
[tex]A =\frac{\pi }{4} (1.5*10^{-3}m)^2\\\\A = 1.767*10^{-6}m^2[/tex]
So, Cross-sectional area of the wire is [tex]1.767*10^{-6}m^2[/tex]
Now we substitute all our values into equation for Drift velocity
[tex]V_D = \frac{8}{(8.5*10^{28})(1.6*10^{-19})(1.767*10^{-6})}[/tex]
[tex]V_D = 3.329 * 10^{-4}m/s[/tex]
Therefore, the drift velocity [tex]V_D[/tex] of the electrons in the wire is 3.329 × 10⁻⁴ m/s
Learn more; https://brainly.com/question/14997979