A worker kicks a flat object lying on a roof. The object slides up the incline 10.0 m to the apex of the roof, and flies off the roof as a projectile. What maximum height (in m) does the object attain? Assume air resistance is negligible, vi = 15.0 m/s, μk = 0.435, and that the roof makes an angle of θ = 43.5° with the horizontal. (Assume the worker is standing at y = 0 when the object is kicked.

Respuesta :

Answer:15.20 m

Explanation:

Given

initial velocity [tex](v_i)=15 m/s[/tex]

inclined length=10 m

[tex]\mu _k=0.435 [/tex]

inclination [tex]\theta =43.5^{\circ}[/tex]

[tex]F_{net}=f_r+mg\sin \theta [/tex]

[tex]a_{net}=\mu _kg\cos \theta +g\sin \theta [/tex]

[tex]a_{net}=0.435\times 9.8\times \cos 43.5+9.8\times \sin 43.5[/tex]

[tex]a_{net}=3.09+6.74=9.83 m/s^2[/tex]

[tex]v^2-u^2=2as[/tex]

[tex]v^2=15^2-2\times (9.83)10[/tex]

[tex]v=5.31 m/s[/tex]

So Particle launches with a speed of 5.31 m/s at an angle of \theta [tex]=43.5[/tex]

[tex]h_{max}=\frac{u^2\sin^2\theta }{2g}[/tex]

[tex]h_{max}=\frac{(5.31)^2\sin ^2(43.5)}{2\times 9.81}[/tex]

[tex]h_{max}=0.679[/tex]

Total height raised is [tex]0.679+\frac{10}{\sin 43.5} =15.20 m[/tex]