Find an explicit form f(n) for each of the following arithmetic sequences (assume a is some real number and x is
some real number).
b. 1 / 5, 1 / 10, 0, − 1 / 10, ...

Respuesta :

Answer:

The explicit form for this sequence is [tex]f(n)=f(1)-\frac{n-1}{10}[/tex] for all [tex]n\geq 1[/tex].

Step-by-step explanation:

The explicit form of an arithmetic sequence  of numbers   is given by the formula  [tex]f(n)=f(1)+(n-1)d [/tex], where  [tex]f(1) [/tex]  is the first term of the sequence,  [tex]d[/tex]  is the difference between two consecutive terms of the sequence, and [tex]n\geq 1[/tex].

We know that  the first four elements for the arithmetic sequence are [tex]{f(1)=\frac{1}{5},f(2)=\frac{1}{10},f(3)=0, f(4)=-\frac{1}{10}}[/tex].

To find the general formula for this problem we only need to calculate [tex]d[/tex] in the above formula.

For n=2, we have

[tex]f(2)=f(1)+(2-1)d=f(1)+d [/tex]

if we replace [tex]f(1)=\frac{1}{5}[/tex] and [tex]f(2)=\frac{1}{10}[/tex] and solve for [tex]d[/tex] we obtain  

[tex]\frac{1}{10}=\frac{1}{5}+d[/tex]

[tex]d=\frac{1}{10}-\frac{1}{5}=-\frac{1}{10}[/tex]

Therefore the explicit form is  [tex]f(n)=f(1)-\frac{n-1}{10}[/tex] for all  [tex]n\geq 1[/tex].

Otras preguntas