A particles velocity is described by the function v(x)=kt^2 m/s, where k is a constant and t is in s. The particle's position at t0=0 is x0=-8.40m. At t1=2.00s, the particle is at x1=6.50 m. Determine the units of k in terms of m and s.

Respuesta :

Answer:

Explanation:

Given

[tex]v(x)=kt^2 m/s[/tex]

[tex]At t_0=0 s, x_0=-8.40 m[/tex]

[tex]At t_1=2 s x_1=6.50 m[/tex]

[tex]\frac{\mathrm{d} x}{\mathrm{d} t}=v(x)=kt^2[/tex]

[tex]x=\frac{kt^3}{3}+c[/tex]

[tex]At\ t_0=0 s, x_0=-8.40 m[/tex]

-8.4=0+c

[tex]x=\frac{kt^3}{3}-8.4[/tex]

At [tex]t_1=2 s x_1=6.50 m[/tex]

[tex]6.5+8.4=\frac{k\times 2^3}{3}[/tex]

[tex]14.9\times 3=k\times 8[/tex]

[tex]k=\frac{44.7}{8}=5.58 m/s^3[/tex]