Answer:
Molar mass = 3.9236 g/mol ≅ 4 g/mol
This corresponds to Helium gas.
Explanation:
Let the moles of nitrogen gas = x moles
Moles of carbon dioxide = x moles ( As both are filled at same temperature and pressure conditions )
Given:
[tex]Mass_{Container}+Mass_{Nitrogen\ gas}=37.289\ g[/tex]
Molar mass of nitrogen gas, [tex]N_2[/tex] = 28.014 g/mol
The formula for the calculation of moles is shown below:
[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]
Thus,
[tex]x\ moles= \frac{Mass}{28.014\ g/mol}[/tex]
Mass of nitrogen gas = 28.014x g
So,
Let, [tex]Mass_{Container}=y[/tex]
[tex]y+28.014x=37.289[/tex]
Similarly,
[tex]Mass_{Container}+Mass_{Carbon\ dioxide\ gas}=37.440\ g[/tex]
Molar mass of nitrogen gas, [tex]CO_2[/tex] = 44.01 g/mol
The formula for the calculation of moles is shown below:
[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]
Thus,
[tex]x\ moles= \frac{Mass{44.01\ g/mol}[/tex]
Mass of nitrogen gas = 44.01x g
So,
[tex]y+44.01x=37.440[/tex]
Solving the two equations, we get :
[tex]Mass_{Container}=y=37.025\ g[/tex]
x = 0.00943 moles
Thus, Given:
[tex]Mass_{Container}+Mass_{Unknown\ gas}=37.062\ g[/tex]
[tex]37.025\ g+Mass_{Unknown\ gas}=37.062\ g[/tex]
Mass of the gas = 0.037 moles
Moles = 0.00943 moles
The formula for the calculation of moles is shown below:
[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]
Thus,
[tex]0.00943\ moles= \frac{0.037\ g}Molar mass}[/tex]
Molar mass = 3.9236 g/mol ≅ 4 g/mol
This corresponds to Helium gas.