Respuesta :
Answer:
3.7 meters
Step-by-step explanation:
step 1
Find the circumference of the circle
The circumference is equal to
[tex]C=2\pi r[/tex]
we have
[tex]r=3\ m[/tex]
assume
[tex]\pi =3.14[/tex]
substitute
[tex]C=2(3.14)(3)[/tex]
[tex]C=18.8\ m[/tex]
step 2
Find the approximate length of minor arc XZ
Remember that the length of the circumference subtends a central angle of 360 degrees
so
using proportion
Determine the approximate length of minor arc XZ by a central angle of 70 degrees
Let
x ----> the approximate length of minor arc XZ
[tex]\frac{18.8}{360}=\frac{x}{70} \\\\x=18.8(70)/360\\\\x= 3.7\ m[/tex]
The approximate length of minor arc XZ is about 3.7 meters
Further explanation
The basic formula that need to be recalled is:
Circular Area = π x R²
Circle Circumference = 2 x π x R
where:
R = radius of circle
The area of sector:
[tex]\text{Area of Sector} = \frac{\text{Central Angle}}{2 \pi} \times \text{Area of Circle}[/tex]
The length of arc:
[tex]\text{Length of Arc} = \frac{\text{Central Angle}}{2 \pi} \times \text{Circumference of Circle}[/tex]
Let us now tackle the problem!
Given:
Radius of Circle = R = 3 m
Central Angle = 70°
Unknown:
Length of Minor Arc = ?
Solution:
[tex]\text{Length of Arc} = \frac{\text{Central Angle}}{360^o} \times \text{Circumference of Circle}[/tex]
[tex]\text{Length of Arc} = \frac{{70}^o}{360^o} \times {2 \pi (3)}[/tex]
[tex]\text{Length of Arc} = \frac{7}{36} \times {6 \pi}[/tex]
[tex]\text{Length of Arc} = \frac{7}{6}\pi[/tex]
[tex]\text{Length of Arc} \approx 3,7 \texttt{ meters}[/tex]
The closest option available will be option B. 3.7 meters
[tex]\texttt{ }[/tex]
Learn more
- Calculate Angle in Triangle : https://brainly.com/question/12438587
- Periodic Functions and Trigonometry : https://brainly.com/question/9718382
- Trigonometry Formula : https://brainly.com/question/12668178
Answer details
Grade: College
Subject: Mathematics
Chapter: Trigonometry
Keywords: Sine , Cosine , Tangent , Opposite , Adjacent , Hypotenuse, Circle , Arc , Sector , Area, Inches , Frisbee , Diameter , Radius , Trigonometry ,
