Answer:
W=2.95 KJ
T₂=394.35 K
Explanation:
Given that
P₁= 130 KPa
V₁=0.07 m³
T₁= 180°C
P₂=80 KPa
Heat capacity ratio for nitrogen gas
γ=1.4
[tex]PV^{\gamma}=C[/tex]
[tex]P_1V_1^{\gamma}=P_2V_2^{\gamma}[/tex]
[tex]V_2=\left(\dfrac{P_1}{P_2}\right)^{\dfrac{1}{\gamma}}V_1[/tex]
[tex]V_2=\left(\dfrac{130}{80}\right)^{\dfrac{1}{1.4}}\times 0.07\ m^3[/tex]
V₂=0.099 m³
[tex]T_2=\left(\dfrac{V_1}{V_2}\right)^{\gamma-1}T_1[/tex]
[tex]T_2=\left(\dfrac{0.07}{0.099}\right)^{1.4-1}\times (273+180)\ K[/tex]
T₂=394.35 K
Work,W
[tex]W=\dfrac{P_1V_1-P_2V_2}{\gamma-1}[/tex]
[tex]W=\dfrac{0.07\times 130-0.099\times 80}{1.4-1}\ KJ[/tex]
W=2.95 KJ