Answer:
Bonds N present market value: $ 10,405.05
Bond M present market value: $ 36.893,90
Explanation:
Bond N is a zero-coupon we discount maturity at 10%:
We calculate using the present value of a lump sum:
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity 70,000.00
time 20.00
rate 0.1
[tex]\frac{70000}{(1 + 0.1)^{20} } = PV[/tex]
PV 10,405.05
Bond M
present value of the annuity payment:
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 2,800.00
time 16 (8 years 2 payment per year)
rate 0.05 (10% annual becomes 5% semiannual)
[tex]2800 \times \frac{1-(1+0.05)^{-16} }{0.05} = PV\\[/tex]
PV $30,345.7548
Then we discount at present date using the lump sum formula:
[tex]\frac{30345.7547684816}{(1 + 0.05)^{16} } = PV[/tex]
PV 13,901.74
We do the same for the next annuity:
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 3,100.00
time 12
rate 0.05
[tex]3100 \times \frac{1-(1+0.05)^{-12} }{0.05} = PV\\[/tex]
PV $27,476.0801
[tex]\frac{27476.0800729913}{(1 + 0.05)^{16} } = PV[/tex]
PV 12,587.11
Now we add the present valeu of the maturity: which is the value of the zero-coupon bond: 10,405.05
Bond M present value: 10,405.05 + 12,587.11 + 13,901.74 = 36.893,9