Identify each sequence as arithmetic or geometric. Explain your answer, and write an explicit formula for the
sequence.
c. − 1 / 2, − 3 / 2, − 5 / 2, − 7 / 2, …

Respuesta :

Answer:

Arithmetic sequence

[tex]a_n=\frac{1}{2}-n[/tex] for [tex]n\geq 1[/tex]

Step-by-step explanation:

We are given that a sequence

[tex]-\frac{1}{2},-\frac{3}{2},-\frac{5}{2},-\frac{7}{2},...[/tex]

We have to identify the sequence as arithmetic or geometric and write an explicit formula .

[tex]a_1=-\frac{1}{2}[/tex]

[tex]a_2=-\frac{3}{2}[/tex]

[tex]a_3=-\frac{5}{2}[/tex]

[tex]a_4=-\frac{7}{2}[/tex]

[tex]d_1=a_2-a_1=\frac{-3}{2}+\frac{1}{2}=-1[/tex]

[tex]d_2=a_3-a_2=-\frac{5}{2}+\frac{3}{2}=-1[/tex]

[tex]d_1=d_2=-1[/tex]

When the difference of consecutive terms is constant then the sequence is an arithmetic.

Hence, the sequence is an arithmetic.

[tex]a_n=a+(n-1)d[/tex]

[tex]a_n=-\frac{1}{2}+(n-1)(-1)=-\frac{1}{2}-n+1=\frac{1}{2}-n[/tex] for [tex]n\geq 1[/tex]