Answer:
Part a)
[tex]T = 13.8 degree C[/tex]
Part b)
[tex]t = 68.54 min[/tex]
Explanation:
As per Newton's law of cooling we know that
[tex]\frac{dT}{dt} = k(T - T_s)[/tex]
now we will have
[tex]\int \frac{dT}{T - T_s} = K\int dt[/tex]
now we will have
[tex]ln(\frac{T - T_s}{T_1 - T_s}) = kt[/tex]
now we will have
[tex]T = T_s + (T_1 - T_s)e^{kt}[/tex]
so we will have
[tex]T_1 = 5 degree[/tex]
now we will have
[tex]10 = 20 + (5 - 20)e^{k(25)}[/tex]
[tex]e^{25k} = 0.67[/tex]
Now we have
k = -0.016
now after 55 min
[tex]T = 20 + (5 - 20)e^{55 k}[/tex]
[tex]T = 13.8 degree C[/tex]
Part b)
now when temperature is 15 degree C
then we will have
[tex]15 = 20 + (5 - 20)e^{kt}[/tex]
[tex]5 = 15 e^{kt}[/tex]
[tex]kt = -1.098[/tex]
[tex]t = 68.54 min[/tex]