Respuesta :
Answer:
(a)[tex]KE_{f}=24.30996 J[/tex]
(b)[tex]KE_{f}=13.36 J[/tex]
Explanation:
(a)
Let compressed length be \triangle x
Initial distance, d= 0.6m
From the law of conservation of energy
[tex]KE_{i}=KE_{f}+PE_{spring}+PE_{mass}[/tex] where [tex]KE_{i}[/tex] is the initial kinetic energy, [tex]KE_{f}[/tex] is final kinetic energy, [tex]PE_{spring}[/tex] is potential energy of spring, [tex]PE_{mass}[/tex] is potential energy of the block
[tex]27J=KE_{f}+0.5k(\triangle x)^{2}+mgh[/tex] where m is mass, g is gravitational constant and h is height, k is spring constant=190
[tex]KE_{f}=27-0.5k(\triangle x)^{2}-mg(d+\triangle x)sin 33^{o}[/tex]
[tex]KE_{F}=27-0.5*190*0.1^{2}-(1*9.81*(0.60+0.10)sin 33^{o}[/tex]
[tex]KE_{f}=27- 0.95- 3.740036=24.30996 J[/tex]
[tex]KE_{f}=24.30996 J[/tex]
(b)
When at rest, the final velocity is zero
From the law of conservation of energy
[tex]KE_{i}=KE_{f}+PE_{spring}+PE_{mass}[/tex]
[tex]KE_{i}=0+0.5k(\triangle x)^{2}+mgh[/tex]
[tex]KE_{f}=0.5k(\triangle x)^{2}+mg(d+\triangle x)sin 33^{o}[/tex]
[tex]KE_{f}=(0.5*190*0.3^{2})+(1*9.81*(0.6+0.3)sin33^{o}[/tex]
[tex]KE_{f}= 8.55+ 4.808618= 13.358618[/tex]
[tex]KE_{f}=13.36 J[/tex]