Answer:
C. [tex]3x^2y[/tex]
Step-by-step explanation:
Given the trinomial
[tex]18x^2y-9x^2y^2+6x^3y[/tex]
consisting of three terms.
Find the greatest common factor of numbers:
[tex]18=2\cdot 3\cdot 3\\ \\9=3\cdot 3\\ \\6=2\cdot 3\\ \\GCF(18,9,6)=3[/tex]
Find the greatest common factor of powers x:
[tex]x^2=x\cdot x\\ \\x^3=x\cdot x\cdot x\\ \\GCF(x^2,x^3)=x\cdot x=x^2[/tex]
Find the greatest common factor of powers y:
[tex]y=y\\ \\y^2=y\cdot y\\ \\GCF(y,y^2)=y[/tex]
Thus, the greatest common factor of the whole terms is
[tex]3\cdot x^2\cdot y=3x^2y[/tex]