Answer:
[tex]d = 51.86 m[/tex]
Explanation:
For largest possible displacement we can say that it must move towards south after it turns 90 degree at the end
So we will have
[tex]x_1 = 29 m[/tex] South
[tex]y_1 = 29 m[/tex] West
[tex]x_2 = 14 m[/tex] South
so total displacement towards South
[tex]x = x_1 + x_2 = 29 + 14[/tex]
[tex]x = 43 m[/tex]
so net maximum displacement will be
[tex]d = \sqrt{x^2 + y^2}[/tex]
[tex]d = \sqrt{43^2 + 29^2}[/tex]
[tex]d = 51.86 m[/tex]