contestada

A 81 kg man is riding on a 40 kg cart traveling at a speed of 2.3 m/s. He jumps off with zero horizontal speed relative to the ground. What is the resulting change in the cart's speed, including sign?

Respuesta :

Answer:

[tex]\Delta v= 4.66\frac{m}{s}[/tex]

Explanation:

In this case we have to use the Principle of conservation of Momentum:

This principle says that in a system  the total momentum is constant if no external forces act in the system. The formula is:

[tex]m_1v_1+m_2v_2=m_1u_1+m_2u_2[/tex]

Where:

[tex]m_1:[/tex] Mass of the first object.

[tex]m_2:[/tex] Mass of the second object.

[tex]v_1:[/tex] Initial velocity of the first object.

[tex]v_2:[/tex] Initial velocity of the second object.

[tex]u_1:[/tex] Final velocity of the first object.

[tex]u_2:[/tex] Final velocity of the second object.

In this problem we have:

[tex]m_1=81kg\\m_2=40kg\\v_1_2=2.3\frac{m}{s}[/tex]

[tex]u_1=0\frac{m}{s}[/tex]

Observation: [tex]v_1_2:[/tex] Is because the system has the same initial velocity.

First we have to find [tex]u_2[/tex],

[tex]m_1v_1+m_2v_2=m_1u_1+m_2u_2[/tex]

We can rewrite it as:

[tex](m_1+m_2)v_1_2=m_1u_1+m_2u_2[/tex]

Replacing with the data:

[tex](m_1+m_2)v_1_2=m_1u_1+m_2u_2\\\\(81kg+40kg)2.3\frac{m}{s}=81kg(0\frac{m}{s})+40kg(u_2)\\\\(121kg)2.3\frac{m}{s}=40kg(u_2)\\\\\frac{(121kg)2.3\frac{m}{s}}{40kg}=u_2\\\\\frac{278.3}{40}\frac{m}{s}=u_2\\\\6.96\frac{m}{s}=u_2[/tex]

We found the final velocity of the cart, but the problem asks for the resulting change in the cart speed, this means:

[tex]\Delta v=u_2-v_2\\\Delta v=6.96\frac{m}{s}-2.3\frac{m}{s}\\\Delta v= 4.66\frac{m}{s}[/tex]

Then, the resulting change in the cart speed is:

[tex]\Delta v= 4.66\frac{m}{s}[/tex]