Respuesta :

Answer: [tex]1,719.87\ units^2[/tex]

Step-by-step explanation:

The missing figure is attached.

The formula to calculate the area of trapezoid is:

[tex]A=\frac{h}{2}(B+b)[/tex]

Where "B" is the long base, "b" is the short base and "h"  is the height.

1. First we need to find the height DE:

- Since:

[tex]m\angle ADC + m\angle FDA=180\°[/tex]

[tex]m\angle ADC=134\°[/tex]

We can find [tex]m\angle FDA[/tex]. This is:

[tex]m\angle FDA=180\°-134\°=46\°[/tex]

 - Observe in the second figure that the triangles EAD and FDA are equal. Then:

[tex]m\angle FDA=m\angle EAD=46\°[/tex]

- Use the Trigonometric Identity [tex]sin\alpha=\frac{opposite}{hypotenuse}[/tex].

In this case:

[tex]\alpha =46\°\\opposite=DE\\hypotenuse=40[/tex]

Then:

[tex]sin(46\°)=\frac{DE}{40}\\\\40*sin(46\°)=DE\\\\DE=28.77\ units[/tex]

2.Use the Trigonometric Identity [tex]cos\alpha=\frac{adjacent}{hypotenuse}[/tex] to find the lenght AE, which is equal to the lenght GB

In this case:

[tex]\alpha =46\°\\adjacent=AE\\hypotenuse=40[/tex]

Then:

[tex]cos(46\°)=\frac{AE}{40}\\\\40*cos(46\°)=AE\\\\AE=GB=27.78\ units[/tex]

- Therefore, the large base AB is:

[tex]AB=AE+DC+GB\\\\AB=27.78+32+27.78\\\\AB=87.56\ units[/tex]

- Now we can substitute values into the formula and calculate the aera of the trapezoid ABCD. This is:

[tex]A=\frac{28.77\ units}{2}(87.56\ units+32\ units)=1,719.87\ units^2[/tex]

Ver imagen luisejr77
Ver imagen luisejr77