Answer:
C= 82.1116
k=-0.0007192
Step-by-step explanation:
[tex]p=Ce^{kx}\\40=Ce^{k1000}\\30=Ce^{k1400}\\[/tex]
Applying logarithmic properties yields in the following linear system:
[tex]ln(40) = ln(C) + 1000k\\ln(30) = ln(C) + 1400k[/tex]
Solving for k:
[tex]ln(40) = ln(C) + 1000k\\ln(30) = ln(C) + 1400k\\400 k = ln(30)-ln(40)\\k=-0.0007192[/tex]
Solving for C:
[tex]40=Ce^{-0.0007192*1000}\\C= \frac{40}{e^{-0.0007192*1000}}\\C=82.1116[/tex]
C= 82.1116
k=-0.0007192