A mass attached to a 50.0 cm long string starts from rest and is rotated 40 times in one minute before reaching a final angular speed. Determine the angular acceleration of the mass, assuming that it is constant.

Respuesta :

To solve this problem it is only necessary to apply the kinematic equations of angular motion description, for this purpose we know by definition that,

[tex]\theta = \frac{1}{2}\alpha t^2 +\omega_0 t + \theta_0[/tex]

Where,

[tex]\theta =[/tex] Angular Displacement

[tex]\alpha =[/tex]Angular Acceleration

[tex]\omega_0 =[/tex] Angular velocity

[tex]\theta_0 =[/tex]Initial angular displacement

For this case we have neither angular velocity nor initial angular displacement, then

[tex]\theta = \frac{1}{2}\alpha t^2[/tex]

Re-arrange for [tex]\alpha,[/tex]

[tex]\alpha = \frac{2\theta}{t^2}[/tex]

Replacing our values,

[tex]\alpha = \frac{2(40rev*\frac{2\pi rad}{1rev})}{60^2}[/tex]

[tex]\alpha = 0.139rad/s[/tex]

Therefore the ANgular acceleration of the mass is [tex]0.139rad/s^2[/tex]