Respuesta :
Answer:
4.44 rpm
Explanation:
[tex]\omega[/tex] = Angular speed
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Europa = [tex]\frac{3138000}{2}\ m[/tex]
R = Radius of arm = 6 m
The acceleration due to gravity is given by
[tex]g=\frac{GM}{r^2}\\\Rightarrow g=\frac{6.67\times 10^{-11}\times 4.8\times 10^{22}}{\left(\frac{3138000}{2}\right)^2}\\\Rightarrow g=1.3\ m/s^2[/tex]
Here the centripetal acceleration of the arm and acceleration due to gravity are equal
[tex]a_c=\omega^2R[/tex]
[tex]a_c=g\\\Rightarrow \omega^2R=1.3\\\Rightarrow \omega^2\times 6=1.3\\\Rightarrow \omega=\sqrt{\frac{1.3}{6}}\\\Rightarrow \omega=0.46547\ rad/s[/tex]
Converting to rpm
[tex]1\ rad/s=\frac{60}{2\pi}\ rpm[/tex]
[tex]0.46547\ rad/s=0.46547\times \frac{60}{2\pi}\ rpm=4.44\ rpm[/tex]
The angular speed of the arm is 4.44 rpm
The angular speed of the lander at the end of the rotating arm is 4.5 rpm.
The given parameters;
- radius of the arm, r = 6 m
- mass of the Europa, m = 4.8 x 10²² kg
- diameter, D = 3138 km = 3,138,000 m
- Radius of the Europa, R = 1,569,000 m
The acceleration due to gravity of the Europa is calculated as follows;
[tex]F = Mg = \frac{GmM}{R^2} \\\\g = \frac{Gm}{R^2} \\\\g = \frac{(6.67 \times 10^{-11}) \times (4.8\times 10^{22})}{(1,569,000)^2} \\\\g = 1.3 \ m/s^2[/tex]
The centripetal acceleration of the lander = acceleration due to gravity
[tex]a_c = g\\\\a_c = 1.3 \ m/s^2[/tex]
The angular speed of the lander is calculated as follows;
[tex]a_c = \omega^2 r\\\\\omega^2 = \frac{a_c}{r} \\\\\omega = \sqrt{\frac{a_c}{r}} \\\\\omega = \sqrt{\frac{1.3}{6}} \\\\\omega = 0.466 \ rad/s\\\\\omega = 0.466 \ \frac{rad}{s} \ \times \frac{1 \ rev}{2 \pi \ rad} \times \frac{60 \ s }{1 \min} = 4.5 \ rpm[/tex]
Thus, the angular speed of the lander at the end of the rotating arm is 4.5 rpm.
Learn more here:https://brainly.com/question/14453709