Respuesta :

Answer:

It has Infinite Number Solutions.

Step-by-step explanation:

Given:

[tex]\frac{1}{8}-10(\frac{3}{4}-\frac{3}{8}x)+\frac{5}{8}x=-\frac{1}{8}(59-35x)[/tex]

Solving the equation we get,

[tex]\frac{1}{8}-10(\frac{3}{4}-\frac{3}{8}x)+\frac{5}{8}x=-\frac{1}{8}(59-35x)[/tex]

Multiplying Both sides by 8 we get,

[tex]8\times[\frac{1}{8}-10(\frac{3}{4}-\frac{3}{8}x)+\frac{5}{8}x]=8\times-\frac{1}{8}(59-35x)\\\\\frac{8}{8}-80(\frac{3}{4}-\frac{3}{8}x)+\frac{5\times8}{8}x=-\frac{8}{8}(59-35x)\\\\[/tex]

Now solving the above equation we get,

[tex]1-(\frac{80\times3}{4}-\frac{80\times3}{8}x)+5x=-(59-35x)\\\\1-(\frac{240}{4}-\frac{240}{8}x)+5x=-59-35x\\\\1-60+30x+5x= -59+35x\\-59+35x=-59+35x\\-59=-59[/tex]

Hence it has infinite number of Solutions.