Answer: [tex]11y^{6}[/tex]
Step-by-step explanation:
For ex : [tex]3x\ , 4b\ ,\ 6x^2y[/tex] etc.
We know that ,
Area of rectangle = Length of rectangle x width of rectangle.
We are given that ,
Length of rectangle [tex]=11y^4[/tex]
Width of rectangle [tex]=y^2[/tex]
Then,
Area of rectangle = [tex]=11y^4\timesy^2[/tex]
Using identity ,
[tex]a^m\times a^n=a^{m+n}[/tex]
we have
Area of rectangle = [tex]=11y^{4+2}[/tex]
⇒ Area of rectangle = [tex]=11y^{6}[/tex]
Hence, the area of a rectangle [tex]=11y^{6}[/tex] [which is a monomial]