Let [tex]\vec u=(u_1,u_2)[/tex] and [tex]\vec v=(v_1,v_2)[/tex] be the two given vectors, with magnitude [tex]\|\vec u\|[/tex] and [tex]\|\vec v\|[/tex] and directions [tex]\theta_{\vec u}[/tex] and [tex]\theta_{\vec v}[/tex], respectively.
From the given info, we have
[tex]\|\vec u\|=\sqrt{{u_1}^2+{u_2}^2}=3.15[/tex]
[tex]\tan\theta_{\vec u}=\tan313^\circ=\dfrac{u_2}{u_1}[/tex]
[tex]\implies u_1\approx2.14,u_2\approx-2.30[/tex]
and
[tex]\|\vec v\|=\sqrt{{v_1}^2+{v_2}^2}=3.47[/tx]
[tex]\tan\theta_{\vec v}=\tan79.0^\circ=\dfrac{v_2}{v_1}[/tex]
[tex]\implies v_1\approx0.956,v_2\approx3.34[/tex]
No telling what the "values of (a) and (b)" is referring to, so I'll leave the rest to you...