Three particles lie in the xy plane. Particle 1 has mass m1 = 6.7 kg and lies on the x-axis at x1 = 4.2 m, y1 = 0. Particle 2 has mass m2 = 5.1 kg and lies on the y-axis at x2 = 0, y2 = 2.8 m. Particle 3 has mass m3 = 3.7 kg and lies at the origin. What is the direction of the net gravitational force on particle 3, expressed as an angle counterclockwise from the +x-axis?

Respuesta :

Answer:

[tex]F=18.58\times 10^{-11}\ N[/tex]

[tex]\theta=30.276^{\circ}[/tex]

Explanation:

Given:

mass of first particle, [tex]m_1=6.7\ kg[/tex]

mass of second particle, [tex]m_2=5.1\ kg[/tex]

mass of third particle, [tex]m_3=3.7\ kg[/tex]

coordinate position of first particle in meters, [tex](x_1,y_1)\equiv(4.2,0)[/tex]

coordinate position of second particle in meters, [tex](x_2,y_2)\equiv(0,2.8)[/tex]

coordinate position of third particle in meters, [tex](x_3,y_3)\equiv(0,0)[/tex]

Now, gravitational force on particle 3 due to particle 1:

[tex]F_{31}=G\frac{m_1.m_3}{r_{31}^2}[/tex]

[tex]F_{31}=6.67\times 10^{-11} \times \frac{6.7\times 3.7}{4.2^2}[/tex]

[tex]F_{31}=9.37\times 10^{-11}\ N[/tex]

towards positive Y axis.

gravitational force on particle 3 due to particle 2:

[tex]F_{32}=G\frac{m_2.m_3}{r_{21}^2}[/tex]

[tex]F_{32}=6.67\times 10^{-11} \times \frac{5.1\times 3.7}{2.8^2}[/tex]

[tex]F_{32}=16.05\times 10^{-11}\ N [/tex]

towards positive X axis.

Now the net force

[tex]F=\sqrt{F_{31}\ ^2+F_{32}\ ^2}[/tex]

[tex]F=\sqrt{(10^{-11})^2(9.37^2+16.05^2)}[/tex]

[tex]F=18.58\times 10^{-11}\ N[/tex]

For angle in counterclockwise direction from the +x-axis

[tex]tan\theta=\frac{9.37\times 10^{-11}}{16.05\times 10^{-11}}[/tex]

[tex]\theta=30.276^{\circ}[/tex]

Ver imagen creamydhaka